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Matroids

Gian-Carlo Rota: Like many other great ideas, matroid theory was invented
by one of the great American pioneers, Hassler Whitney. His paper flagrantly
reveals the unique peculiarity of this field, namely, the exceptional variety of
cryptomorphic definitions for a matroid, embarrassingly unrelated to each
other and exhibiting wholly different mathematical pedigrees. It is as if one
were to condense all trends of present day mathematics onto a single finite
structure, a feat that anyone would a priori deem impossible, were it not for
the mere fact that matroids do exist.
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Matroids: the basis axiom

Let E = [n] := {1, . . . , n} be a finite set.

Definition
A matroid is a pair M = (E ,B), where the nonempty B ⊆ 2E satisfies the
following basis exchange axiom: if B1,B2 ∈ B, then for every x ∈ B1 \ B2,
there exists y ∈ B2 \ B1 such that B1 \ {x} ∪ {y} ∈ B.

Bases are matroid-theoretic generalization of maximal independent sets.
All bases have the same cardinality, called the rank of the matroid.

The basis exchange axiom is equivalent to a even stronger symmetric basis
exchange axiom: we can make B1 \ {x} ∪ {y},B2 \ {y} ∪ {x} ∈ B at the
same time.

If M = (E ,B) is a matroid of rank r , then M∗ = (E ,E \ B) is a matroid of
rank n − r , called the dual matroid.
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Matroids: the circuit axiom

One may also define matroids via circuit axioms.
Circuits are matroid-theoretic generalization of minimal dependent sets.

Definition
A matroid is a pair M = (E , C), where the set of circuits C ⊆ 2E satisfies
the following axioms:
(a) Every C ∈ C is nonempty.
(b) Anti-chain. If C1 ⊆ C2 are in C, then C1 = C2.
(c) Circuit elimination. If C1 and C2 are distinct circuits with e ∈ C1 ∩ C2,
then (C1 ∪ C2) \ {e} contains a circuit.

The circuits of the dual matroid M∗ are called the cocircuits of M.
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Basis polytope of a matroid

Given a basis B of M, the indicator vector of B is ~eB =
∑

i∈B ~ei ∈ Rn.
The basis polytope PM of M is the convex hull of {~eB |B is a basis of M}.

Theorem [Gelfand-Goresky-MacPherson-Serganova, 1987]
A polytope P with vertices in {0, 1}n is the basis polytope of a matroid if
and only if every edge of P is parallel to ~ei − ~ej for distinct i and j .

The vectors {~ei − ~ej} with distinct i and j form the root systems of type A,
and the corresponding Coxeter groups are just the symmetric groups.
What are the corresponding matroids for other types of root systems and
Coxeter groups?
We are interested in the type D case, and call them the orthogonal matroids.
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Orthogonal matroids

The ground set is still E = [n]. The symmetric difference of two sets is
denoted A4B = (A \ B) ∪ (B \ A).

Definition
An orthogonal matroid is a pair M = (E ,B), where the nonempty B ⊆ 2E

satisfies the following basis exchange axiom: if B1,B2 ∈ B, then for every
x ∈ B14B2, there exists y 6= x such that B14{x , y} ∈ B (and
B24{x , y} ∈ B).

Definition (orthogonal matroid via basis polytope)
An orthogonal matroid on E is a polytope whose vertices are in {0, 1}n and
whose edges are parallel to ~ei ± ~ej with distinct i , j ∈ [n].
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Orthogonal matroids

Bases  (in)dependent sets, circuits, duality, cocircuits, minors...

Example
Matroids on [n]

l
Orthogonal matroids on [n] whose bases all have the same cardinality
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Represent orthogonal matroids by matrices

Consider the following skew-symmetric matrix over Q:

A =


0 −1 −2 1 0
1 0 1 3 0
2 −1 0 2 −1
−1 −3 −2 0 1
0 0 1 −1 0

 .

The collection of all subsets J ⊆ [5] where the J × J submatrix AJ is
nonsingular is the set of bases of an orthogonal matroid.
In this example, we have E = [5] and B = {∅} ∪

([5]
4

)
∪
([5]

2

)
− {{15}, {25}}.

Take ∅ and {1234} in B, and 1 in the symmetric difference {1234}. Then
we can choose 2 6= 1 such that ∅4{12}, {1234}4{12} ∈ B.
The row space of (I5|A) is an example of a maximal isotropic subspace of
Q10.
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Orthogonal Grassmannians

Let K be a field. A subspace W of V = K 2n endowed with a symmetric,
non-degenerate bilinear form is called isotropic if 〈W ,W 〉 = 0.

We will only consider the maximal isotropic subspaces, which have dimension
n.

Maximal isotropic subspaces of V are parameterized by the orthogonal
Grassmannian OG (n, 2n) ⊂ P2n−1(K ). Its coordinates correspond to subsets
of [n], called the Wick coordinates.
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Orthogonal Grassmannians

Proposition
OG (n, 2n) is determined by some quadratic relations called the Wick
relations, i.e., for all J1, J2 ⊆ [n], if

J14J2 = {x1 < x2 < · · · < xm},

then,
m∑

k=1

(−1)k · XJ14{xk} · XJ24{xk} = 0.

The simplest (nontrivial) ones are the 4-term Wick relations:

XJabcdXJ − XJabXJcd + XJacXJbd − XJadXJbc = 0,
XJabcXJd − XJabdXJc + XJacdXJb − XJbcdXJa = 0.
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Orthogonal Grassmannians

Proposition
Given a maximal isotropic subspace W ⊆ V , the support of the associated
Wick vector w ∈ OG (n, 2n) is the set of bases of an orthogonal matroid.

An orthogonal matroid arising in this way is representable over K .

Theorem [Baker-Jin], using a theorem of [Nelson, 2018]
Asymptotically, 100% of orthogonal matroids are not representable over any
field.
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Bands

A pointed monoid B is a set B together with an associative and
commutative multiplication · : B × B → B , and two elements 0, 1 ∈ B such
that 0 · a = 0 and 1 · a = a for all a ∈ B . We write ab for a · b.

Let B be a pointed monoid. Identifying 0 ∈ B with the additive neutral
element in N[B] defines a semiring B+ = N[B]/〈0〉, which we call the
ambient semiring of B . An ideal of B+ is a subset I such that
0 ∈ I , I + I = I , and B · I = I .

Definition
A band is a pointed monoid B together with an ideal NB ⊆ B+ such that
for every a ∈ B , there exists a unique element b ∈ B such that a+ b ∈ NB .

We think of NB as linear combinations of elements of B which ‘sum to zero’,
and call it the null set of the band B . In this sense, we write −a for the
unique element b ∈ B with a + b ∈ NB , and call it the additive inverse of a.
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The category of bands

A band morphism is a multiplicative map f : B → C with f (0) = 0 and
f (1) = 1 such that

∑
ai ∈ NB implies

∑
f (ai ) ∈ NC .

The regular partial field is F±1 = {0, 1,−1}, and the null set is
{0, 1+ (−1), 1+ 1+ (−1) + (−1), . . . }. This is the initial object in the
category of bands.
The final object is the trivial band {0} in which 0 = 1.
A ring R is naturally a band with null set NR = {

∑
ai |
∑

ai = 0 ∈ R}.
An idyll is a band B with 0 6= 1 and B× = B \ {0}.
The final object for idylls is the Krasner hyperfield K = {0, 1} whose null set
is {0, 1+ 1, 1+ 1+ 1, . . . }.

The category of bands has all limits, colimits, free algebras, and quotients.
These will be useful studying representations of matroids and orthogonal
matroids.
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The prime k-ideals

Let B be a band.
A prime k-ideal of B is a subset p ⊆ B such that 0 ∈ p 6= B, pB = p, B \ p
is multiplicatively closed, and if b +

∑
bj ∈ NB with all bj ∈ p, then b ∈ p.

The prime k-spectrum Speck(B) is defined to be the topological space
whose points are prime k-ideals, with topology defined by Uf = {p : f /∈ p}.

One can define localizations by any multiplicatively closed subset S of B .

Theorem
There is a presheaf Ok

X on X = Speck(B) such that OX ,p = Bp.

Problem: this is in general NOT a sheaf: the local sections do not
necessarily patch together to give a global section.
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Sheafification: the prime m-ideals

A prime m-ideal of B is a subset p ⊆ B such that 0 ∈ p 6= B, pB = p, and
B \ p is multiplicatively closed.
The prime m-spectrum Specm(B) is defined to be the topological space
whose points are prime m-ideals, with topology defined by Uf = {p : f /∈ p}.

Theorem
There exists a unique sheaf OX on X = Specm(B) such that Om

X (Uf ) = Bf

and OX ,p = Bp. Moreover, OX is the sheafification of Ok
X .

A band space is a topological space X together with a sheaf of bands.
A band scheme is a band space X such that every point x ∈ X has an open
heighborhood that is isomorphic to the prime m-spectrum of a band B .
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Tracts

Tracts are firstly introduced in [Baker-Bowler, 2019]. They are idylls (F ,NF )
for which the null set is not required to be closed under addition.

Explicitly, a tract F = (F ,NF ) is an abelian group F× (written
multiplicatively) with 0 6= 1, together with an additive relation structure
NF ⊆ N[F ] such that:

(T1) 0 ∈ NF , 1 6∈ NF .
(T2) There is a unique element ε ∈ F× such that 1+ ε ∈ NF .
(T3) If g ∈ F and α ∈ NF , then g · α ∈ NF .

We again think of NF as linear combinations of elements of F which ‘sum to
zero’. We write −1 for ε.
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Orthogonal Matroids over Tracts

Let F be a tract.
A Wick function on [n] with coefficients in F is ϕ : 2[n] → F such that:

(W1) ϕ is not identically zero.

(W2) All Wick relations are satisfied, i.e. for all J1, J2 ∈ [n], we have

m∑
k=1

(−1)k · ϕ(J14{xk})ϕ(J24{xk}) ∈ NF ,

where J14J2 = {x1 < · · · < xm}.

Tong Jin Orthogonal matroids over F±1 -algebras Sept. 2023 21 / 36



Orthogonal matroids over tracts

Two Wick functions ϕ and ψ with coefficients in F are equivalent if
ϕ = c · ψ for some nonzero c ∈ F .

We call an equivalence class of Wick functions an orthogonal matroid over
the tract F , or simply an orthogonal F -matroid.

Proposition [Jin-Kim]
The support Supp(ϕ) := {J ⊆ [n] : ϕ(J) 6= 0} of a Wick function
ϕ : 2[n] → F is the set of bases of an orthogonal matroid.

We call it the underlying orthogonal matroid of ϕ, denoted Mϕ.
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Pushforwards

Proposition [Jin-Kim]
Let f : F1 → F2 be a tract morphism. If ϕ is a Wick function with
coefficients in F1, then the composition f ◦ ϕ is a Wick function with
coefficients in F2. Moreover, Mϕ = M f ◦ϕ.

This gives us a pushforward operator f∗ mapping orthogonal F1-matroids to
orthogonal F2-matroids.

Let M be an orthogonal F -matroid. If we take g : F → K, the final object,
then g∗(M) is the same as the underlying orthogonal matroid of M.

We say an orthogonal matroid M is representable over a tract F if there
exists an orthogonal F -matroid M ′ such that g∗(M ′) = M.
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Products

Proposition [Jin-Kim]
Let F1,F2 be tracts, and let ϕ1, ϕ2 be Wick functions with coefficients in
F1,F2, respectively, with the same underlying orthogonal matroid M. Then
ϕ1 × ϕ2 : 2[n] → F1 × F2 defined as (ϕ1 × ϕ2)(T ) := (ϕ1(T ), ϕ2(T )) is a
Wick function with coefficients in the product F1 × F2 with underlying
orthogonal matroid M.
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Regular orthogonal matroid

Theorem [Baker-Jin]

Let P be a partial field. Then ϕ : 2[n] → P is a Wick function if and only if
the support of ϕ gives an orthogonal matroid M and ϕ satisfies the 4-term
Wick relations.

In the latter case, we say that ϕ is a weak representation of M over P .

Theorem [Geelen, 1996] [Jin-Kim]
Let M be an orthogonal matroid. Then the following are equivalent:

(i) M is representable over F2 and F3.
(ii) M is representable over the regular partial field F±1 .
(iii) M is representable over all fields.
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Proof for the regular orthogonal matroid characterizations

(ii) ⇒ (iii) is given by the unique tract morphism F±1 to the field K .

(iii) ⇒ (i) is trivial.

(i) ⇒ (ii). If M is representable over F2 and F3, then it is representable over
F2 × F3. Take the (unique) group homomorphism (F2 × F3)

× → (F±1 )×, it
gives a weak orthogonal F±1 -matroid whose underlying orthogonal matroid is
also M. Since F±1 is a partial field, the weak orthogonal F±1 -matroid is
automatically a (strong) orthogonal F±1 -matroid.

We also give two new characterizations of regular orthogonal matroids
without a specific minor M4.
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Cryptomorphisms

We also have notions of orthogonal F -signatures and F -circuit sets that
capture the circuit axioms of orthogonal matroids, and a notion of
orthogonal F -vector sets that generalizes vectors of matroids over tracts
[Anderson, 2019].

The cryptomorphism proof involves a homotopy theorem [Wenzel, 1995] on
the 1-skeleton of the basis polytope, called the basis graph of the orthogonal
matroid. Wenzel’s result generalizes Maurer’s homotopy theorem for
matroids [Maurer, 1973].
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Homotopy theorem on the basis graph

The basis graph of an orthogonal matroid M has vertex set B. Two vertices
B1,B2 ∈ B are adjacent if |B14B2| = 2, i.e. B2 = B14{x , y} for x 6= y .

For example, the basis graph of the orthogonal matroid associated to

A =

( 0 −1 −2 1 0
1 0 1 3 0
2 −1 0 2 −1
−1 −3 −2 0 1
0 0 1 −1 0

)

contains the following cycle.

12

1234 34

2345

241245
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Homotopy theorem on the basis graph

Theorem [Wenzel, 1995]
Every cycle in the basis graph of an orthogonal matroid can be decomposed
into cycles of length at most 4.

12

1234 34

2345

241245
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Back to matroids

When the support of a weak Wick function ϕ is a matroid, ϕ is also known
as a weak Grassman-Plücker function.
Two weak Grassman-Plücker functions ϕ and ϕ′ are in the same rescaling
equivalence class if they are in the same orbit of the action of T = (K×)N

on G(r , n).
We denote by χR

M(F ) the set of rescaling equivalence classes of weak
Grassman-Plücker functions over a pasture (i.e. a 3-term tract) F with
support M.

Theorem [Baker-Lorscheid, 2021]

The functor χR
M is representable by a pasture FM canocinally attached to the

matroid M, i.e. we have χR
M(F ) ∼= Hom(FM ,F ).

We call FM the foundation of M.
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Reformulation of Lafforgue’s theorem

A matroid is called rigid if its basis polytope has no non-trivial regular
subdivisions into other matroid polytopes.

Alex Fink’s PhD thesis: Matroid subdivisions have made prominent
appearances in algebraic geometry. [...] Lafforgue’s work implies, for
instance, that a matroid whose polytope has no subdivisions is representable
in at most finitely many ways, up to the actions of the obvious groups.

Folklore Theorem, and [Baker-Lorscheid, 2023+]

If M is a rigid matroid, then χR
M(K ) is finite for every field K .
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Now for orthogonal matroids...

Question
What can we say about the (rescaling) representation space χR

M(F ) of an
orthogonal matroid M?

Answer: χR
M taking a 4-term tract P to the set of rescaling equivalence

classes of moderately weak orthogonal P-matroids with support M is
representable by a 4-term tract, which by abuse of notation we denote again
by FM and call it the foundation of the orthogonal matroid M.
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Presentation of FM when M is a matroid

Theorem [Baker-Lorscheid, 2023+]
(i). The foundation of a matroid M is generated by configurations

H1 H2 H3 H4

L

where Hi ’s are distinct hyperplanes of M and L is a corank 2 flat contained
in all Hi ’s.
We call such a configuration a universal cross ratio.

(ii). The relations between the universal cross ratios are inherited from
embedded minors of M on at most 7 elements.

The proof combines Tutte’s homotopy theorem and ideas from
[Gelfand-Rybnikov-Stone, 1995].
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Tutte’s homotopy theorem

Let M be a matroid on E . Pick a ∈ E . Assume M and M ′ = M \ a are
connected.
The Tutte graph has vertex set {H ∈ H′|a /∈ cl(H)}. Two vertices H1 and
H2 are adjacent if H1 and H2 intersect at a connected corank 2 flat of M ′.

Theorem [Tutte, 1958]
Every cycle in the Tutte graph can be decomposed into three different types
of elementary cycles.

The first type ←→ Uniform(2, 4), Uniform(3, 5), or F7.
The second type ←→ M(K4 − e).
The third type ←→ F ∗7 .
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Thank you!
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